On Friedrichs – Poincaré - type inequalities ✩
نویسندگان
چکیده
Friedrichsand Poincaré-type inequalities are important and widely used in the area of partial differential equations and numerical analysis. Most of their proofs appearing in references are the argument of reduction to absurdity. In this paper, we give direct proofs of Friedrichs-type inequalities in H 1(Ω) and Poincaré-type inequalities in some subspaces of W1,p(Ω). The dependencies of the inequality coefficients on the domain Ω and some sub-domains are illustrated explicitly. 2004 Elsevier Inc. All rights reserved.
منابع مشابه
PU BL IC Two - sided bounds for eigenvalues of differential operators with applications to Friedrichs ’ , Poincaré , trace , and similar constants
We present a general numerical method for computing guaranteed two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method, on the method of a priori-a posteriori inequalities, and on a complementarity technique. The two-sided bounds are formulated in a general Hilbert space setting and as a byproduct we prove an a...
متن کاملTwo-Sided Bounds for Eigenvalues of Differential Operators with Applications to Friedrichs, Poincaré, Trace, and Similar Constants
We present a general numerical method for computing guaranteed two-sided bounds for principal eigenvalues of symmetric linear elliptic differential operators. The approach is based on the Galerkin method, on the method of a priori–a posteriori inequalities, and on a complementarity technique. The two-sided bounds are formulated in a general Hilbert space setting and as a byproduct we prove an a...
متن کاملCompact Embedding in the Space of Piecewise H Functions
Abstract. We prove a compact embedding theorem in a class of spaces of piecewise H functions subordinated to a class of shape regular, but not necessarily quasi-uniform triangulations of a polygonal domain. This result generalizes the Rellich–Kondrachov theorem. It is used to prove generalizations to piecewise functions of nonstandard Poincaré–Friedrichs inequalities. It can be used to prove Ko...
متن کامل] 2011 - 04 Rellich - type Discrete Compactness for Some Discontinuous Galerkin FEM ∗
We deduce discrete compactness of Rellich type for some discontinuous Galerkin finite element methods (DGFEM) including hybrid ones, under fairly general settings on the triangulations and the finite element spaces. We make use of regularity of the solutions to an auxiliary second-order elliptic boundary value problem as well as the error estimates of the associated finite element solutions. Th...
متن کاملRefined Convex Sobolev Inequalities
This paper is devoted to refinements of convex Sobolev inequalities in the case of power law relative entropies: a nonlinear entropy–entropy production relation improves the known inequalities of this type. The corresponding generalized Poincaré type inequalities with weights are derived. Optimal constants are compared to the usual Poincaré constant.
متن کامل